유 틸 리 티 터 널 기술위원회

Annual Technical Report

주요 활동사항

- 유틸리티터널 풀백공법에 따른 TBM 형태별 메인 베어링 최대크기 분석
- 터널 내부직경과 쉴드의 외부 직경에 따른 TBM 풀백방식의 차이 분석
- 쉴드TBM을 고려한 단계별 내부해체 과정 분석
- 커터헤드 형태와 풀백공법 적용에 따른 제거 방식 분석

세부 활동내용

• TBM 형태에 따른 메인 베어링 유니트 최대크기(파란색) 차이 분석

TBM의 유형	TBM 단면도와 베어링 크기	TBM의 유형	TBM 단면도와 베어링 크기
슬러리 쉴드		TBM 쉴드	
EPB 쉴드		오픈 쉴드	

• 터널 내부직경과 쉴드의 외부 직경에 따른 TBM 풀백방식의 차이 분석

구분	개념도	상세 내용
① Extension Kit 복구가 가능한 완전한 Retractable Shield	Retractable Shidd	 Shield의 외경이 터널의 내경보다 작아서 면판을 제외한 TBM장비를 온전하게 복구 Extension Kit는 볼트로 채결된 분할 가능한 장비로 복구 및 재사용이 가능
② Extension Kit 복구가 불가능한 완전한 Retractable Shield	Retractable Sheld Lost & Hisson Kil	- Shield의 외경이 터널의 내경보다 작아서 면판을 제외한 TBM장비를 온전하게 복구 - Extension Kit는 매립된 상태로 지층 내 보존 - Extension Kit는 콘크리트 파이프로 대체가능
③ 복구가 가능한 내부 주요 장치 및 분할 Shield	Lost Telson	- TBM의 주요 구성장치들이 하나씩 분해되어 복구 - 쉴드는 분할된 설계로 복구가 가능
④ 복구가 가능한 내부 주요 장치 및 복구가 불가능한 쉴드		- TBM의 주요 구성장치들이 하나씩 분해되어 복구 - 쉴드는 매립된 상태로 지층 내 보존

• 쉴드TBM을 고려한 단계별 내부해체 과정 분석

단계	개념도	상세 내용
① 유압 유니트 및 Water tank 해체		- 유압호스 및 전기케이블 철거 - 이송용러그 용접 및 자동 윈치 드럼 연결 - 터널 후방(발진수직구) 이송
② 내부 발판 분해	1-2	- 발판을 포함한 이송 간섭부위 철거 - 터널 후방(발진수직구) 이송
③ 내부 배관 분해 및 반출		각종 배관 밸브 및 플랜지부 해체플렌지 체결 볼트 분해 및 배관 철거터널 후방(발진수직구) 이송
④ 중절잭 해체 및 반출	BOLT RIN	- Braket bolt 해체하여 분해 - 8개소 동일 작업 - 터널 후방(발진수직구) 이송
⑤ 드라이브 유니트 분해를 위한 간섭부 절단	A B CC	이젝트 배관 및 Bracket 산소 절단 및 분해(환기시설 필수)Bracket 간섭 요소 및 TBM 면단 고정부 절단
⑥ 후방부 레일설치 및드라이브 유니트반출		- 레일을 활용한 터널 후방 (발진수직구) 이송
① 내부해체 완료		- 내부해체 완료 후 시공 및 현장상황에 따라 면판 및 쉴드 분해 및 제거 수행

• 커터헤드 형태와 풀백공법 적용에 따른 제거 방식 분석

커터헤드 형태	형태 예시	특징 및 풀백 적용방식
Retractable design	, Heter	 커터헤드 면판에 기계적으로 연결된 어버커터가 존재하며 이를 접어서 TBM 본체와 함께 풀백공법 적용이 가능 암반굴착이 아닌 경우에는 상대적으로 단순한 지반조건 에서만 적용 가능
Segmented design		 여러개의 부분면판을 볼트와 용접으로 고정하여 제작한 커터헤드로 굴착 종료 후 커터헤드에서 다이아몬드 커터를 제거한 후 분할하여 배출하는 형태 암반 굴착이 가능하지만 분해가 어려운 단점이 있음
Lost Over Cut design		 커터헤드 경계부의 오버커터가 헤드본체에 기계적으로 연결된 형태 굴착 종료 후 오버커트링이 분리되고 커터헤드 본체도 TBM본체와 함께 풀백 적용이 가능